Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-38423282

RESUMO

OBJECTIVE: Maternal stress influences in utero brain development and is a modifiable risk factor for offspring psychopathologies. Reward circuitry dysfunction underlies various internalizing and externalizing psychopathologies. This study examined (1) the association between maternal stress and microstructural characteristics of the neonatal nucleus accumbens (NAcc), a major node of the reward circuitry, and (2) whether neonatal NAcc microstructure modulates individual susceptibility to maternal stress in relation to childhood behavioral problems. METHOD: K-means longitudinal cluster analysis was performed to determine trajectories of maternal stress measures (Perceived Stress Scale [PSS], hair cortisol) from preconception to the third trimester. Neonatal NAcc microstructural measures (orientation density index [ODI] and intracellular volume fraction [ICVF]) were compared across trajectories. We then examined the interaction between maternal stress and neonatal NAcc microstructure on child internalizing and externalizing behaviors, assessed between ages 3 and 4 years. RESULTS: Two trajectories of maternal stress magnitude ("low"/"high") were identified for both PSS (n = 287) and hair cortisol (n = 336). Right neonatal NAcc ODI (rNAcc-ODI) was significantly lower in "low" relative to "high" PSS trajectories (n = 77, p = .04). PSS at preconception had the strongest association with rNAcc-ODI (r = 0.293, p = .029). No differences in NAcc microstructure were found between hair cortisol trajectories. A significant interaction between preconception PSS and rNAcc-ODI on externalizing behavior was observed (n = 47, p = .047). CONCLUSION: Our study showed that the preconception period contributes to in utero NAcc development, and that NAcc microstructure modulates individual susceptibility to preconception maternal stress in relation to externalizing problems.

2.
Psychol Med ; : 1-12, 2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38314509

RESUMO

BACKGROUND: Screen time in infancy is linked to changes in social-emotional development but the pathway underlying this association remains unknown. We aim to provide mechanistic insights into this association using brain network topology and to examine the potential role of parent-child reading in mitigating the effects of screen time. METHODS: We examined the association of screen time on brain network topology using linear regression analysis and tested if the network topology mediated the association between screen time and later socio-emotional competence. Lastly, we tested if parent-child reading time was a moderator of the link between screen time and brain network topology. RESULTS: Infant screen time was significantly associated with the emotion processing-cognitive control network integration (p = 0.005). This network integration also significantly mediated the association between screen time and both measures of socio-emotional competence (BRIEF-2 Emotion Regulation Index, p = 0.04; SEARS total score, p = 0.04). Parent-child reading time significantly moderated the association between screen time and emotion processing-cognitive control network integration (ß = -0.640, p = 0.005). CONCLUSION: Our study identified emotion processing-cognitive control network integration as a plausible biological pathway linking screen time in infancy and later socio-emotional competence. We also provided novel evidence for the role of parent-child reading in moderating the association between screen time and topological brain restructuring in early childhood.

3.
Psychol Med ; 53(6): 2540-2552, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-37310299

RESUMO

BACKGROUND: Diminished sensory gating (SG) is a robust finding in psychotic disorders, but studies of early psychosis (EP) are rare. It is unknown whether SG deficit leads to poor neurocognitive, social, and/or real-world functioning. This study aimed to explore the longitudinal relationships between SG and these variables. METHODS: Seventy-nine EP patients and 88 healthy controls (HCs) were recruited at baseline. Thirty-three and 20 EP patients completed 12-month and 24-month follow-up, respectively. SG was measured using the auditory dual-click (S1 & S2) paradigm and quantified as P50 ratio (S2/S1) and difference (S1-S2). Cognition, real-life functioning, and symptoms were assessed using the MATRICS Consensus Cognitive Battery, Global Functioning: Social (GFS) and Role (GFR), Multnomah Community Ability Scale (MCAS), Awareness of Social Inference Test (TASIT), and the Positive and Negative Syndrome Scale (PANSS). Analysis of variance (ANOVA), chi-square, mixed model, correlation and regression analyses were used for group comparisons and relationships among variables controlling for potential confounding variables. RESULTS: In EP patients, P50 ratio (p < 0.05) and difference (p < 0.001) at 24-month showed significant differences compared with that at baseline. At baseline, P50 indices (ratio, S1-S2 difference, S1) were independently associated with GFR in HCs (all p < 0.05); in EP patients, S2 amplitude was independently associated with GFS (p = 0.037). At 12-month and 24-month, P50 indices (ratio, S1, S2) was independently associated with MCAS (all p < 0.05). S1-S2 difference was a trending predictor of future function (GFS or MCAS). CONCLUSIONS: SG showed progressive reduction in EP patients. P50 indices were related to real-life functioning.


Assuntos
Transtornos Psicóticos , Cognição Social , Humanos , Seguimentos , Análise de Variância , Filtro Sensorial
4.
Neuroimage Clin ; 38: 103395, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37031637

RESUMO

BACKGROUND: Childhood depression is a highly distinct and prevalent condition with an unknown neurobiological basis. We wish to explore the resting state fMRI data in children for potential associations between neural connectivity and childhood depressive symptoms. METHODS: A longitudinal birth cohort study with neuroimaging data obtained at 4.5, 6.0 and 7.5 years of age and the Children Depression Inventory 2 (CDI) administered between 8.5 and 10.5 years was used. The CDI score was used as the dependent variable and tested for correlation, both simple Pearson and network based statistic, with the functional connectivity values obtained from the resting state fMRI. Cross-validated permutation testing with a general linear model was used to validate that the identified functional connections were indeed implicated in childhood depression. RESULTS: Ten functional connections and four brain regions (Somatomotor Area B, Temporoparietal Junction, Orbitofrontal Cortex and Insula) were identified as significantly associated with childhood depressive symptoms for girls at 6.0 and 7.5 years. No significant functional connections were found in girls at 4.5 years or for boys at any timepoint. Network based statistic and permutation testing confirmed these findings. CONCLUSIONS: This study revealed significant sex-dependent associations of neural connectivity and childhood depressive symptoms. The regions identified are implicated in speech/language, social cognition and information integration and suggest unique pathways to childhood depressive symptoms.


Assuntos
Encéfalo , Depressão , Masculino , Feminino , Criança , Humanos , Pré-Escolar , Depressão/diagnóstico por imagem , Estudos de Coortes , Encéfalo/diagnóstico por imagem , Córtex Pré-Frontal , Neuroimagem , Imageamento por Ressonância Magnética/métodos , Vias Neurais/diagnóstico por imagem
5.
Neuroimage ; 274: 120127, 2023 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-37086876

RESUMO

Cortical thickness reductions differ between individuals with psychotic disorders and comparison subjects even in early stages of illness. Whether these reductions covary as expected by functional network membership or simply by spatial proximity has not been fully elucidated. Through orthonormal projective non-negative matrix factorization, cortical thickness measurements in functionally-annotated regions from MRI scans of early-stage psychosis and matched healthy controls were reduced in dimensionality into features capturing positive covariance. Rather than matching the functional networks, the covarying regions in each feature displayed a more localized spatial organization. With Bayesian belief networks, the covarying regions per feature were arranged into a network topology to visualize the dependency structure and identify key driving regions. The features demonstrated diagnosis-specific differences in cortical thickness distributions per feature, identifying reduction-vulnerable spatial regions. Differences in key cortical thickness features between psychosis and control groups were delineated, as well as those between affective and non-affective psychosis. Clustering of the participants, stratified by diagnosis and clinical variables, characterized the clinical traits that define the cortical thickness patterns. Longitudinal follow-up revealed that in select clusters with low baseline cortical thickness, clinical traits improved over time. Our study represents a novel effort to characterize brain structure in relation to functional networks in healthy and clinical populations and to map patterns of cortical thickness alterations among ESP patients onto clinical variables for a better understanding of brain pathophysiology.


Assuntos
Córtex Cerebral , Transtornos Psicóticos , Humanos , Estudos Longitudinais , Teorema de Bayes , Córtex Cerebral/diagnóstico por imagem , Transtornos Psicóticos/diagnóstico por imagem , Imageamento por Ressonância Magnética
6.
Bipolar Disord ; 25(4): 301-311, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36855850

RESUMO

BACKGROUND: The hippocampus is a heterogeneous structure composed of biologically and functionally distinct subfields. Hippocampal aberrations are proposed to play a fundamental role in the etiology of psychotic symptoms. Bipolar disorder (BPD) has substantial overlap in symptomatology and genetic liability with schizophrenia (SZ), and reduced hippocampal volumes, particularly at the chronic illness stages, are documented in both disorders. Studies of hippocampal subfields in the early stage of BPD are limited and cross-sectional findings to date report no reduction in hippocampal volumes. To our knowledge, there have been no longitudinal studies of BPD evaluating hippocampal volumes in the early phase of illness. We investigated the longitudinal changes in hippocampal regions and subfields in BPD mainly and in early stage of psychosis (ESP) patients more broadly and compared them to those in controls (HC). METHODS: Baseline clinical and structural MRI data were acquired from 88 BPD, from a total of 143 ESP patients, and 74 HCs. Of those, 66 participants (23 HC, 43 patients) completed a 12-month follow-up visit. The hippocampus regions and subfields were segmented using Freesurfer automated pipeline. RESULTS: We found general baseline deficits in hippocampal volumes among BPD and ESP cohorts. Both cohorts displayed significant increases in the anterior hippocampal region and dentate gyrus compared with controls. Additionally, antipsychotic medications were positively correlated with the posterior region at baseline. CONCLUSION: These findings highlight brain plasticity in BPD and in ESP patients providing evidence that deviations in hippocampal volumes are adaptive responses to atypical signaling rather than progressive degeneration.


Assuntos
Transtorno Bipolar , Transtornos Psicóticos , Esquizofrenia , Humanos , Transtorno Bipolar/diagnóstico , Estudos Transversais , Hipocampo/diagnóstico por imagem , Transtornos Psicóticos/diagnóstico , Esquizofrenia/diagnóstico , Imageamento por Ressonância Magnética , Tamanho do Órgão
7.
Dev Cogn Neurosci ; 55: 101107, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35413663

RESUMO

Early differences in reward behavior have been linked to executive functioning development. The nucleus accumbens (NAc) and orbitofrontal cortex (OFC) are activated by reward-related tasks and identified as key nodes of the brain circuit that underlie reward processing. We aimed to investigate the relation between NAc-OFC structural and functional connectivity in preschool children, as well as associations with future reward sensitivity and executive function. We showed that NAc-OFC structural and functional connectivity were not significantly associated in preschool children, but both independently predicted sensitivity to reward in males in a left-lateralized manner. Moreover, significant NAc-OFC structure-function coupling was only found in individuals who performed poorly on executive function tasks in later childhood, but not in the middle- and high-performing groups. As structure-function coupling is proposed to measure functional specialization, this finding suggests premature functional specialization within the reward network, which may impede dynamic communication with other regions, affects executive function development. Our study also highlights the utility of multimodal imaging data integration when studying the effects of reward network functional flexibility in the preschool age, a critical period in brain and executive function development.


Assuntos
Função Executiva , Imageamento por Ressonância Magnética , Encéfalo , Criança , Pré-Escolar , Humanos , Imageamento por Ressonância Magnética/métodos , Masculino , Núcleo Accumbens , Recompensa
8.
Schizophr Bull Open ; 3(1): sgac014, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35386953

RESUMO

The Triple Network Model of psychopathology identifies the salience network (SN), central executive network (CEN), and default mode network (DMN) as key networks underlying the pathophysiology of psychiatric disorders. In particular, abnormal SN-initiated network switching impacts the engagement and disengagement of the CEN and DMN, and is proposed to lead to the generation of psychosis symptoms. Between-network connectivity has been shown to be abnormal in both substance use disorders (SUD) and psychosis. However, none have studied how SUD affects connectivity between sub-networks of the DMN, SN, and CEN in early stage psychosis (ESP) patients. In this study, we collected data from 113 ESP patients and 50 healthy controls to investigate the effect of SUD on between-network connectivity. In addition, we performed sub-group analysis by exploring whether past SUD vs current SUD co-morbidity, or diagnosis (affective vs non-affective psychosis) had a modulatory effect. Connectivity between four network-pairs, consisting of sub-networks of the SN, CEN, and DMN, was significantly different between ESP patients and controls. Two patterns of connectivity were observed when patients were divided into sub-groups with current vs past SUD. In particular, connectivity between right CEN and the cingulo-opercular salience sub-network (rCEN-CON) showed a gradient effect where the severity of abnormalities increased from no history of SUD to past+ to current+. We also observed diagnosis-specific effects, suggesting non-affective psychosis patients were particularly vulnerable to effects of substance use on rCEN-CON connectivity. Our findings reveal insights into how comorbid SUD affects between-network connectivity and symptom severity in ESP.

9.
Mol Psychiatry ; 27(2): 1177-1183, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34697450

RESUMO

The early stage of psychosis (ESP) is a critical period where effective intervention has the most favorable impact on outcomes. Thalamic connectivity abnormalities have been consistently found in psychosis, and are associated with clinical symptoms and cognitive deficits. However, most studies consider ESP patients as a homogeneous population and fail to take the duration of illness into account. In this study, we aimed to capture the progression of thalamic connectivity changes over the first five years of psychosis. Resting-state functional MRI scans were collected from 156 ESP patients (44 with longitudinal data) and 82 healthy controls (24 with longitudinal data). We first performed a case-control analysis comparing thalamic connectivity with 13 networks in the cortex and cerebellum. Next, we modelled the shape (flat, linear, curvilinear) of thalamic connectivity trajectories by comparing flexible non-linear versus linear models. We then tested the significance of the duration of illness and diagnosis in trajectories that changed over time. Connectivity changed over the ESP period between the thalamus and default mode network (DMN) and fronto-parietal network (FPN) nodes in both the cortex and cerebellum. Three models followed a curvilinear trajectory (early increase followed by a subsequent decrease), while thalamo-cerebellar FPN connectivity followed a linear trajectory of steady reductions over time, indicating different rates of change. Finally, diagnosis significantly predicted thalamic connectivity. Thalamo-cortical and thalamo-cerebellar connectivity change in a dynamic fashion during the ESP period. A better understanding of these changes may provide insights into the compensatory and progressive changes in functional connectivity in the early stages of illness.


Assuntos
Transtornos Psicóticos , Tálamo , Cerebelo , Humanos , Imageamento por Ressonância Magnética , Vias Neurais
10.
Schizophr Bull ; 47(1): 138-148, 2021 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-32572485

RESUMO

Imaging studies in psychotic disorders typically examine cross-sectional relationships between magnetic resonance imaging (MRI) signals and diagnosis or symptoms. We sought to examine changes in network connectivity identified using resting-state functional MRI (fMRI) corresponding to divergent functional recovery trajectories and relapse in early-stage psychosis (ESP). Prior studies have linked schizophrenia to hyperconnectivity in the default mode network (DMN). Given the correlations between the DMN and behavioral impairments in psychosis, we hypothesized that dynamic changes in DMN connectivity reflect the heterogeneity of outcomes in ESP. Longitudinal data were collected from 66 ESP patients and 20 healthy controls. Longitudinal cluster analysis identified subgroups of patients with similar trajectories in terms of symptom severity and functional outcomes. DMN connectivity was measured in a subset of patients (n = 36) longitudinally over 2 scans separated by a mean of 12 months. We then compared connectivity between patients and controls, and among the different outcome trajectory subgroups. Among ESP participants, 4 subgroups were empirically identified corresponding to: "Poor," "Middle," "Catch-up," and "Good" trajectory outcomes in the complete dataset (n = 36), and an independent replication (n = 30). DMN connectivity changes differed significantly between functional subgroups (F3,32 = 6.06, P-FDR corrected = .01); DMN connectivity increased over time in the "Poor" outcome cluster (ß = +0.145) but decreased over time in the "Catch-up" cluster (ß = -0.212). DMN connectivity is dynamic and correlates with a change in functional status over time in ESP. This approach identifies a brain-based marker that reflects important neurobiological processes required to sustain functional recovery.


Assuntos
Transtornos Psicóticos Afetivos/fisiopatologia , Conectoma , Rede de Modo Padrão/fisiopatologia , Transtornos Psicóticos/fisiopatologia , Esquizofrenia/fisiopatologia , Adulto , Transtornos Psicóticos Afetivos/diagnóstico por imagem , Rede de Modo Padrão/diagnóstico por imagem , Progressão da Doença , Feminino , Estado Funcional , Humanos , Estudos Longitudinais , Imageamento por Ressonância Magnética , Masculino , Avaliação de Resultados em Cuidados de Saúde , Transtornos Psicóticos/diagnóstico por imagem , Esquizofrenia/diagnóstico por imagem , Índice de Gravidade de Doença , Adulto Jovem
11.
Sci Rep ; 10(1): 16857, 2020 10 08.
Artigo em Inglês | MEDLINE | ID: mdl-33033375

RESUMO

Post-inflammatory behaviours in rodents are widely used to model human depression and to test the efficacy of novel anti-depressants. Mice injected with lipopolysaccharide (LPS) display a depressive-like phenotype twenty-four hours after endotoxin administration. Despite the widespread use of this model, the mechanisms that underlie the persistent behavioural changes after the transient peripheral inflammatory response remain elusive. The study of the metabolome, the collection of all the small molecule metabolites in a sample, combined with multivariate statistical techniques provides a way of studying biochemical pathways influenced by an LPS challenge. Adult male CD-1 mice received an intraperitoneal injection of either LPS (0.83 mg/kg) or saline, and were assessed for depressive-like behaviour 24 h later. In a separate mouse cohort, pro-inflammatory cytokine gene expression and 1H nuclear magnetic resonance (NMR) metabolomics measurements were made in brain tissue and blood. Statistical analyses included Independent Sample t-tests for gene expression data, and supervised multi-variate analysis using orthogonal partial least squares discriminant analysis for metabolomics. Both plasma and brain metabolites in male mice were altered following a single peripheral LPS challenge that led to depressive-like behaviour in the forced swim test. The plasma metabolites altered by LPS are involved in energy metabolism, including lipoproteins, glucose, creatine, and isoleucine. In the brain, glutamate, serine, and N-acetylaspartate (NAA) were reduced after LPS, whereas glutamine was increased. Serine-modulated glutamatergic signalling and changes in bioenergetics may mediate the behavioural phenotype induced by LPS. In light of other data supporting a central imbalance of glutamate-glutamine cycling in depression, our results suggest that aberrant central glutaminergic signalling may underpin the depressive-like behaviours that result from both inflammation and non-immune pathophysiology. Normalising glutaminergic signalling, rather than seeking to increase serotonergic signalling, might prove to be a more coherent approach to the development of new treatments for mood disorder.


Assuntos
Comportamento Animal/fisiologia , Encéfalo/metabolismo , Depressão/etiologia , Depressão/metabolismo , Metabolismo Energético , Glutamatos/metabolismo , Glutamina/metabolismo , Inflamação/metabolismo , Lipídeos/sangue , Metabolômica/métodos , Animais , Depressão/psicologia , Depressão/terapia , Modelos Animais de Doenças , Lipopolissacarídeos/efeitos adversos , Masculino , Camundongos Endogâmicos , Terapia de Alvo Molecular , Transdução de Sinais/fisiologia , Natação/fisiologia
12.
Transl Psychiatry ; 10(1): 148, 2020 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-32404908

RESUMO

Minocycline has shown therapeutic promise in pre-clinical animal models and early phase clinical trials for a variety of psychiatric disorders. Previous studies on minocycline have shown its ability to suppress microglia activity and reduce inflammatory cytokine levels, and its amelioration of depressive-like behaviour in animals and humans. However, the underlying mechanisms that lead to minocycline's psychotropic effects are not clear. In this study, we investigated the psychological and biochemical effects of an acute dose of minocycline or placebo in 40 healthy adult volunteers. Psychological changes in emotional processing, implicit learning, and working memory were assessed. Plasma inflammatory markers, measured with enzyme-linked immunosorbent assays, and serum metabolites, measured with proton nuclear magnetic resonance combined with multi-variate analysis techniques, were also studied. Results showed that minocycline administration decreased fear misclassification and increased contextual learning, which suggested that reducing negative biases and improving cognition, respectively, may underlie the antidepressant actions of this agent. An examination of serum metabolites revealed higher levels of lipoproteins, particularly cholesterol, in the minocycline group. Minocycline also decreased circulating concentrations of the inflammatory marker C-Reactive Peptide, which is consistent with previous research. These effects highlight two important psychological mechanisms that may be relevant to the efficacy of minocycline reported in clinical trials, and also suggest a possible largely unexplored lipid-related biochemical pathway for the action of this drug.


Assuntos
Antibacterianos , Minociclina , Adulto , Animais , Medo , Humanos , Metaboloma , Microglia , Minociclina/farmacologia
13.
Front Mol Neurosci ; 9: 169, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-28133445

RESUMO

Since the discovery that a single dose of ketamine, an N-methyl-D-aspartate receptor (NMDAR) antagonist, had rapid and long-lasting antidepressant effects, there has been increased interest in using NMDAR modulators in the pharmacotherapy of depression. Ketamine's efficacy seems to imply that depression is a disorder of NMDAR hyperfunctionality. However, studies showing that not all NMDAR antagonists are able to act as antidepressants challenge this notion. Furthermore, NMDAR co-agonists have also been gaining attention as possible treatments. Co-agonists such as D-serine and sarcosine have shown efficacy in both pre-clinical models and human trials. This raises the question of how both NMDAR antagonists and agonists are able to have converging behavioral effects. Here we critically review the evidence and proposed therapeutic mechanisms for both NMDAR antagonists and agonists, and collate several theories on how both activation and inhibition of NMDARs appear to have antidepressant effects.

14.
Stem Cells Dev ; 25(2): 189-201, 2016 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-26464067

RESUMO

Neural stem cells (NSCs) are isolated from primary brain tissue and propagated as a heterogeneous mix of cells, including neural progenitors. To date, NSCs have not been purified in vitro to allow study of their biology and utility in regenerative medicine. In this study, we identify C1qR1 as a novel marker for NSCs and show that it can be used along with Lewis-X (LeX) to yield a highly purified population of NSCs. Using time-lapse microscopy, we are able to follow NSCs forming neurospheres, allowing their visualization. Finally, using single-cell polymerase chain reaction (PCR), we determine the molecular signature of NSCs. The single-cell PCR data suggest that along with the Notch and Shh pathways, the Hippo pathway plays an important role in NSC activity.


Assuntos
Encéfalo/citologia , Diferenciação Celular/fisiologia , Células-Tronco Neurais/citologia , Neurônios/citologia , Transdução de Sinais/fisiologia , Animais , Biomarcadores/análise , Separação Celular , Células Cultivadas , Camundongos Endogâmicos C57BL
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...